Finally, we have to consider how many notes the instrument can play at once, which is expressed as its polyphony. A quick glance at your hands may suggest that 10 ought to be plenty. But consider what happens when you play a series of chords, or an arpeggio, while holding down the sustain pedal. Each note that continues to sustain takes up one note of polyphony. If you press the sustain pedal and play a three-note chord with both hands, then repeat those chords three more times in successively higher octaves, you will now be sustaining 24 notes. Played with layered voices (a combination of two different voices, such as piano and strings), that example would require 48 notes of polyphony. Some models of digital piano have 32 notes of polyphony, but most current models have 64 or more.

A cautionary note: As you delve into the specifications of digital pianos, the temptation to rank instruments based on numbers — how many notes were sampled, how much memory the sample set takes up, and so on — will be high. And the results would be highly unreliable. Designing a digital piano involves choices driven by economics (e.g., how much a model will sell for), by the intended customer's needs (beginner or professional), and, in no small part, by the engineering talent at the manufacturer's disposal. Engineering creativity, or lack of it, can turn the numerical specifications on their head, resulting in an instrument that sounds better — or worse — than its numbers would suggest.

Before sampling became commercially viable (i.e., affordable — when introduced, the first sampling instruments cost as much as a small house), various forms of "synthesis" were used to produce electronic music. Oscillators, filters, modulators, envelope generators, and other electronics worked together to make sounds never before heard, as well as sounds that vaguely mimicked those of familiar acoustic instruments. The classic model was Robert Moog's modular synthesizer of the late 1960s and '70s — the instrument that allowed Wendy Carlos to produce Switched-On Bach. Some of today's digital pianos retain the ability to modify their voices in much the same manner as these early synthesizers.

Looking to a currently emerging technology, we find a method called physical modeling. While modeling has been used before in software-based pianos, Roland has just released the V-Piano, the first digital piano to rely solely on this technology. Modeling breaks down an instrument's sound into discrete elements that can be represented by mathematical equations, or algorithms. In the case of the acoustic piano, these algorithms represent the behavior of the primary elements that affect the tone — hammers, strings, soundboard, and dampers. Whereas in sampling, a preexisting sample is retrieved from the piano's memory, in modeling the tone is created in real time, based on a complex series of calculations. Sampling requires large amounts of memory for storing high-resolution sample sets, whereas modeling requires powerful processors to instantaneously make the many calculations needed to produce a given note.

Controlling Tone — The Keyboard

Just as in an acoustic piano, the role of the keyboard is to provide the player with intimate, reliable control of the instrument's tonal resources. But just as there is no single correct tone, there is no single correct feel; rather, there is an acceptable range of touch characteristics.

Touch Weight

As in an acoustic piano, the action of most digital pianos is primarily an arrangement of levers, but the digital action is far less complex and doesn't require regular adjustment. Players use a few definable criteria to judge an action. Some are easily measured, others are largely subjective. Among the most frequently debated by digital piano buyers is touch weight.

Touch weight is the amount of force, typically measured in grams, required to depress a key. A touch weight in the range of 50 to 55 grams is generally considered normal for an acoustic piano. The resistance offered by the key is a combination of friction and the mass of the parts being moved. Both of these factors behave slightly differently in acoustic pianos than in digital pianos. Measuring the touch weight of an acoustic piano is typically done with the sustain pedal fully depressed, which removes the weight of the dampers and reduces the force required to depress the key. The problem is, digitals don't have dampers, so the digital manufacturer has to decide between the higher weight the pianist will feel when the dampers are being lifted by the key, and the lighter weight when the dampers have been lifted by the sustain pedal. There is no single right answer — just design choices.

Friction is also a bigger factor in the action of an acoustic than in a digital piano. Most of the friction in an acoustic action is due to various hinge points and bearing surfaces, many of which have cloth or felt bushings. Over time, these bushings wear away or become compacted, reducing friction and the amount of force required to depress a key. Another factor is humidity. Felt and wood parts readily absorb and release moisture, effectively increasing or decreasing friction with changes in the amount of moisture in the air. Because digital actions contain far fewer felt parts and—with the exception of a few upper-end actions sporting wooden keys — no wooden parts at all, changes in friction due to wear and fluctuations in humidity are substantially reduced.

The Definitive Piano Buying Guide for

Buying New, Used, and Restored Acoustic Pianos and Digital Pianos

Spring 2014    Page 125

Spring 2014    Page 125

      Brookside Press LLC

      P.O. Box 4916

      Palm Springs, CA 92263 USA


Copyright 2014 Brookside Press LLC.

All rights reserved.